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The problem of oscillatory viscous flow in a tube with rigid sinusoidal walls of large 
amplitude is solved numerically, for Reynolds numbers up to 300 and Strouhal 
numbers in the range lO-'l. Flow visualization photographs have confirmed 
qualitatively many of the predictions. Results analogous to those of Sobey (1980, 
1983) for the two-dimensional problem have been obtained for regions of the 
parameter space studied in detail by that author. However, new flow structures are 
found in the previously neglected Strouhal number range of 0.02-0.1. These flows are 
characterized by significant interaction of flow events in successive half-cycles, due 
to the persistence of strong shed vortices. Bifurcation of the solution structure can 
then occur for Strouhal numbers between about 0.025 and 0.045, with the development 
of time-asymmetric flows: thus the velocity field at some instant of a positive-flow 
half-cycle may not be equal to minus the velocity field at the corresponding instant 
of a negative-flow half-cycle. 

1. Introduction 
In  1973, Bellhouse et al. reported on the success of a membrane oxygenator which 

utilized pulsatile flows across a furrowed membrane and gave good mms-transfer 
performance under laminar flow conditions. Bellhouse & Snuggs (1977) investigated 
this phenomenon in a flow visualization study. Steady flows and uniformly accelerating 
or decelerating flows were produced past a semi-cylindrical hollow in an otherwise 
flat wall, and two important observations were made: the vortices formed in 
accelerating flow were much stronger than those maintained in steady flow at the 
peak Reynolds number; and, during deceleration, the fluid comprising the vortex in 
the hollow was ejected far out into the main flow. The efficiency of the Bellhouse 
oxygenator was thus explained in terms of good lateral mixing. 

The numerical study of Sobey (1980) and the experiments of Stephanoff, Sobey 
& Bellhouse (1980), on oscillatory flows in symmetrical wavy-walled channels, 
representing a more realistic model of the oxygenator, confirmed that vortices would 
be formed in the hollows as the flow accelerated ; the centre of each vortex would then 
move towards the channel centreline as the flow decelerated and reversed in direction. 
Sobey (1980) also considered the low-Reynolds-number and high-Strouhal-number 
limits of wavy-walled channel flows, and the low-Strouhal-number limit was described 
in Sobey (1983). Asymmetrical channel flows were examined in Sobey (1982). 

There have been a number of related numerical studies of unsteady internal flows 
with large wall perturbations: Cheng, Clark & Robertson (1972) and Cheng, Robertson 
and Clark (1973) considered oscillatory flows in channels with periodic, symmetric 
rectangular occlusions; Daly (1975, 1976) studied pulsatile flow past a single smooth 
constriction in an axisymmetric pipe; and Savvides & Gerrard (1984) considered 



516 M .  E .  Ralph 

axisymmetric flows in tubes with triangular corrugations of the wall. A common 
finding of all these works is that a vortex expands as the mean flow decelerates, and 
its centre moves towards the axis of the conduit. Daly pointed out the possible 
physiological importance of this effect in thrombus dislodgement at  an arterial 
stenosis, and Savvides & Gerrard have shown, by computing particle paths, that 
significant lateral motion of fluid particles accompanies vortex ejection. 

The principal aim of the present work has been to provide, for axisymmetric 
conduits, a more comprehensive survey of the parameter space than has hitherto been 
given for oscillatory flow in any conduit with periodic wall shape. The steady-flow 
problem has been considered elsewhere (see Ralph 1985 for a survey of some of the 
recent literature). The paper is organized as follows: the numerical and flow 
visualization techniques are described in $92 and 3; $4 deals briefly with the 
axisymmetric analogues of the flows described in Sobey (1980,1983) ; several new flow 
structures are described in $85 and 6, and in $7 the regions of the parameter space 
in which the various flows occur are summarized; some conclusions are given in $8. 

2. Mathematical formulation and numerical solution 
The formulation is similar to that of Sobey (1980), and is described in more detail 

in Ralph (1985). The axial and radial coordinates are & ( x , r ) ,  (see figure l),  the 
corresponding velocity coAmponents are oo(u, w) and the time, density, pressure and 
kinematic viscosity are t/f, 8, b q p ,  and $respectively, where f is the fre uency of the 
time variation in flow rate. If Go is the maximum volumetric flow, then z0 is given by 

uo = Qo/.ci2, 

and the flow rate varies according to 

Q = Qo sin2.t. 

Hence for t between 0 and 0.5 the mean flow (or ‘bulk’ flow) is positive (taken to 
be the sense left to right) and for t between 0.5 and 1 it is negative. The mean flow 
has its maximum magnitude a t  the times t = 0.25 and 0.75. 

The governing equations are the axisymmetric forms of the NavierStokes 
equations with zero azimuthal velocity (see Batchelor 1967, for example), here 
expressed in dimensionless form 

and 
au av 
ax ar -+-+- = 0. 

St and a2 represent a Strouhal number and a frequency parameter respectively, 
defined by 

df 
00 

St = - 

and (7) 
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FIQURE 1.  The geometry of the wavy-walled tube. 

The ratio a2/St  = ooCi/v̂  will be denoted by Re,, and represents the peak Reynolds 
number of the flow. The vorticity 6 and stream function $ are defined by 

and 

The governing equations are then recast as a vorticity transport equation and a 
Poisson equation for the stream function. Following Sobey (1980), a Prandtl-type 
transformation is made to simplify application of the boundary conditions : 

where 

and g(x) is a function representing the shape of the wall (see figure 1). In  the present 
work g(x) has taken the form 

(12) 

and the parameters D and L have been given the values 2 and 10 respectively. The 
coordinates are further transformed, departing from Sobey's formulation, by defining 

y = 22 (13) 

so that for equal increments in y ,  the increments in 2 and r are smaller near the walls 
than near the axis of the tube. The rationale for this transformation is that it is 
thought to be desirable to concentrate mesh points at the wall, where the vorticity 
gradients are largest. The system of governing equations obtained by applying the 
two transformations is as follows : 

and 
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where a prime denotes differentiation with respect to x and 

u and v are given by 

and 

and the boundary conditions are 

9+lz-zo+L = 4+lz-zo~ 

C1z-zo+L = C12-20’ 

(23) 

(24) 

where zo denotes an arbitrary axial position. Equations (23) and (24) represent 
conditions of periodicity, implying that the solutions are valid only at some distance 
from the ends of the tube. 

The above problem was represented in finite-difference form and a fairly standard 
algorithm, as described in Roache (1976), for example, was used to obtain solutions. 
Equation (14) was represented using centred-time, centred-space differences, with 
the Dufort-Frankel substitution, following Cheng et al. (1972, 1973) and Savvides & 
Gerrard (1984). Upwind differencing, which has a formal truncation error one order 
lower than central differencing but is less prone to numerical instability, has been used 
in the present work only in certain of the very low-Strouhal-number calculations 
described in $4. A t  each time step, the Poisson equation for the stream function was 
solved by an over-relaxation method with over-relaxation parameter 1.72. 

A finite-difference grid with 41 axial and 17 radial mesh positions was used (except 
at very low values of Strouhal number when a 31 x 13 grid was utilized), and figure 2 
shows the positions in the real geometry of computational mesh points which were 
uniformly spaced in the (2, y)-coordinate system. The quadratic stretching can be seen 
to result in a high resolution of the wall region at  the expense of a rather coarse grid 
near the axis of the tube. 

The extent of the parameter space has precluded the computation of each solution 
with a variety of grid sizes, but results for a single steady-flow test problem, using 
meshes with between 21 x 9 and 61 x 25 points, showed the solution to be convergent 
with decreasing mesh size. The Reynolds number in this test case was 200, of the same 
order of magnitude as the largest Reynolds number considered. The difference 
between the ‘converged ’ value of the calculated mean pressure gradient and the value 
obtained with the 41 x 17 grid was about 3 %. With upwind differencing the error in 
this calculated parameter was greater than 25 % . 

A further consideration regarding the accuracy of solutions concerned the dimen- 
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FIGURE 2. Location of computational mesh points in the (2, r)-coordinate system. 

sionless time for which a given computation had to be continued in order that the 
transient effect of time-marching the solution from rest should become negligible. 
When transient effects had decayed, the velocity field at any instant was usually 
identical with that at the corresponding instant in the previous half-cycle, except for 
a change of sign. The ‘settling time’ was found to increase with a2, so that for values 
of az of order unity, computation of about 1.5 cycles was sufficient to obtain 
periodicity in time, whereas for values of order 10, about 6 cycles were required. A 
solution was said to be ‘periodic in time’ when streamline patterns at corresponding 
instants in successive half-cycles were precise mirror images, within the limits of 
plotting accuracy. In  certain flows, half-cycle periodicity was never established, but 
the streamline patterns at corresponding instants of successive complete flow cycles 
became identical. In  other cases the flow could only be said to be periodic when three 
complete flow cycles were considered, or else periodicity was not established at all 
within the limits of the computation time. Flows which did not show half-cycle 
periodicity are described in $6. 

The size of the timestep was determined by stability considerations, and typical 
values were in the range 1.25 x were 
required in the very low-Strouhal-number flows. 

to 5 x Values as small as 3 x 

3. Flow-visualization experiments 
Flow visualization in axisymmetric geometries is complicated by the fact that the 

material of the tube wall and the fluid itself can act as a strong lens. This prevents 
more than a fraction of the plane which it is intended to view from being held in focus, 
and also tends to scatter the incident light. To overcome these problems, the exterior 
of the test section should be rectangular, and it is also desirable to match the 
refractive indices of the working fluid and the material of which the test section is 
made. 

In the present work, oil of turpentine was used as the working fluid (with a 
refractive index of about 1.47), and the test section was constructed from Perspex 
(of refractive index about 1.49). The test section was made in two halves, by pressing 
a male mould into two blocks of Perspex which were subsequently machined and 
polished: this gave a square exterior cross-section. The test section consisted of five 
complete wall wavelengths with minimum bore 4 mm, maximum bore 12 mm and 
wavelength 20 mm [corresponding to L = 10 and D = 2 in (12)]. 200 mm of straight, 
uniform tube of 4 mm bore carried the flow at each end of the test section. 

Flows were made visible by injecting into the working fluid highly reflecting 
particles of mica and titanium dioxide, sold commercially as ‘Mearlin’ (Mearl 
Corporation, N.Y.), which were illuminated on an axial plane. The particles were 
5-90 pm in size, and although not neutrally buoyant, the terminal velocities were very 



520 M. E. Ralph 

small compared with the fluid velocities and cannot have significantly affected the 
visualization photographs. Illumination was provided by a 150 W projector light 
source, collimated through a pair of slits. 

Oscillatory flows were induced using a variable-speed d.c. motor to drive a piston 
via a variable-stroke Scotch-yoke mechanism. A small magnet mounted on the 
flywheel of the motor passed over a Hall-effect switch fixed to the baseplate, and the 
signal from the switch was output to an electronic timing unit [previously used in 
the experiments of Stephanoff et al. 19801. The timing unit was used to trigger the 
camera through a motor drive unit, and allowed for a variable delay between the Hall 
switch pulse, representing a reference phase position, and the opening of the camera 
shutter. The camera used was a Nikon F-2, with 55 mm Micro-NIKKOR lens, MD-2 
motor drive unit and PB-5 bellows focusing unit. Kodak 2475 recording film was used 
at the maximum aperture setting off 3.5. 

In  oscillatory flows, particle paths do not in general coincide with streamlines, but 
if the exposure time is short compared with the timescale for significant changes in 
the streamline pattern, there will be approximate coincidence over the exposure time. 
From this point of view it was desirable to use as short an exposure as possible. 
However, a lower limit on exposure time was imposed by the need for an adequate 
exposure level, and hence there was an upper limit on the frequency of flows which 
could be studied, giving a maximum allowable value of a2 of about 6. Exposure times 
of $ s and & s were used. There was also an upper limit of about 0.05 on permissible 
Strouhal numbers: at larger Strouhal numbers the time required for a fluid particle 
to trace a path sufficiently long that its direction could be determined was too large 
a fraction of the flow period. 

4. ‘Intermediate ’ Strouhal number, viscous dominated and quasi-steady 
flows 

In  Sobey (1980, 1983), a number of oscillatory flow structures occurring in 
symmetrical wavy-walled channels were described, and these have been found to have 
their analogues in wavy-walled tube flows. Further description of the axisymmetric 
flows is given in Ralph (1985), but a brief review of their most important features 
is given here for completeness and for comparison with the new flow patterns detailed 
subsequently. 

Figure 3 shows computed instantaneous streamlines in an axisymmetric flow with 
parameters Re, = 50 and St = 0.005, corresponding to the ‘intermediate’ Strouhal- 
number category of Sobey (1980). Figure 3 (a) depicts the streamlines at t = 0.07, that 
is a t  a time early in the acceleration phase of the flow cycle, when there is no flow 
separation. An incipient separation region is present at  t = 0.10 (figure 3b) which 
grows to occupy most of the hollow at the instant of peak flow (figure 3c).  The vortex 
continues to grow in size as the flow decelerates (figure 3 4 ,  so that at  the time of 
zero flow, a large recirculation is present (figure 3e). The flow close to the wall already 
being in the negative sense, when the bulk flow changes sign, fluid passes between 
the wall and the vortex rather than along the centreline, giving the streamline pattern 
of figure 3 ( f )  at time t = 0.55. The separation region on the axis is rapidly eroded, 
so that at time t = 0.57, the streamline pattern is identical with that in figure 3 (a), 
but with the flow in the opposite sense. Flow-visualization experiments have 
confirmed the occurrence of this flow structure in wavy-walled tubes. 

A t  low Reynolds numbers (less than about 12 for the geometry considered here), 
the streamline patterns are similar to those shown in figure 3, but with flow reversal 
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FIQURE 3. Computed instantaneous streamline plots for a flow with parameters Re, = 50, 
St = 0.005: (a) t = 0.07; ( b )  0.10; (c) 0.25; (d) 0.45; (e) 0.50; (f) 0.55. 

occurring late in the deceleration phase of the flow cycle, and initiated at the tips 
of the hollows rather than in the diverging part of the tube. Sobey (1980) showed 
that this was because the flow is effectively governed by the unsteady Stokes 
equations, with the steady inertial terms exerting negligible influence on the flow 
structure. This is also true for relatively large Strouhal numbers (of order unity) at 
arbitrary Reynolds number. 

A t  small values of Strouhal number and frequency parameter, the flow might be 
expected to become increasingly quasi-steady in character. However, as for flow in 
a uniform channel or tube, even if the frequency parameter is very small, there is 
always a time interval containing the time of mean-flow reversal when the flow is 
distinctly non-quasi-steady . Sobey (1983) proposed a definition of quasi-steadiness 
for wavy-walled channel flows which required that the inertially dominated separation 
region formed during bulk-flow acceleration should die away completely before the 
onset of viscous-flow reversal. He found that the upper limit on Strouhal number for 
quasi-steady flow was inversely proportional to the square of the Reynolds number, 
and this has also been found to be true for wavy-walled-tube flow. 

5. Certain new flow structures in the Strouhal-number range 0.02-0.1 

but there is a rich solution structure in this part of the parameter space. 
The Strouhal-number range 0.02-0.1 has not been investigated in detail previously, 

5.1. ‘Bursting through ’ of an ejected vortex and secondary separation 
Sobey (1980) observed that the initiation of a new separation region, as in figure 3 ( a ) ,  
could occur before erosion of the old, ejected vortex (figure 3f) was complete. He 
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FIQURE 4. Computed instantaneous streamline plots for a flow with parameters Re, = 200, 
St = 0.02: (a) t = 0.05; ( b )  0.20; (c) 0.25; (d )  0.30; ( e )  0.35; ( f )  0.40; (g) 0.45; (h) 0.50. 

stated that in his computations, the velocity field due to the eroding vortex exerted 
little influence on the developing flow pattern. The present calculations have shown 
however, that if the Strouhal number is increased to values of about 0.02 or greater, 
the time required for erosion of the ejected vortex at the centreline increases 
dramatically, so that this vortex may continue to affect the flow development 
throughout the half-cycle following its ejection. One example of such a flow is shown 
in figure 4, in which the parameters take the values Re, = 200 and St = 0.02. 

Figure 4(a) shows the flow early in the acceleration phase, with a large clockwise 
vortex at the centreline and a separation of opposite sign at the wall. A new 
counterclockwise separation occurs in the diverging part of the tube (figures 4b,  c), 
in which secondary separation subsequently occurs (figure 4 4 .  In figure 4 (e), the flow 
‘bursts through’ the vortex at the centreline before completely eroding it, resulting 
in a free toroidal vortex. Note that the flow is in the sense left to right at every point 
of the centreline in the figure, and hence there is a saddle point in the stream-function 
field. The free vortex attaches to the wall, and the streamlines straighten out as this 
saddle point disappears (figure 4f). At this instant, the new counterclockwise vortex 
coalesces with the old vortex of the same sign. There are then two clockwise vortices 
embedded in the main counterclockwise separation region, and these correspond to 
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FIGURE 5. Flow-visualization photographs for a flow with parameters Re, = 200, St = 0.02: (a) 
t = 0.05; (6) 0.20; (c) 0.25; (d)  0.30; (e) 0.35; (f) 0.40; (9) 0.45; (h)  0.50. 
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FIGURE 6. Variation of the vortex strength at times of zero flow with Strouhal number for various 
Reynolds numbers: (i) Re, = 10; (ii) Re, = 20; (iii) Re, = 50; (iv) Re, = 100; (v) Re, = 200. 

the secondary separation of the present half-cycle and the main vortex of the previous 
half-cycle, persisting a t  much reduced size and strength. These vortices coalesce to 
form a single secondary separation region (figure 49) before the instant of zero flow 
(figure 4 h) . 

Visualization photographs obtained for the same values of the flow parameters are 
shown in figure 5,  at times in the flow cycle corresponding to those of figure 4. The 
agreement is good, although any secondary separations present in figures 5 (f-h) are 
rather too weak to be clearly discernible. 

When secondary separation was observed at lower Reynolds numbers, this usually 
occurred near the time of peak flow, and the secondary-separation zone subsequently 
disappeared without affecting the flow structure significantly. Secondary separation 
in unsteady flow has been predicted by Gillani & Swanson (1976) for an isolated 
axisymmetric dilatation and by O’Brien (1975) in a symmetrical driven cavity flow. 
There is a striking similarity between O’Brien’s flow structure and that just 
described : in both cases a primary vortex gives rise to a secondary separation which 
then coalesces with a new vortex of the same sign, formed after the flow direction 
reverses. 

In order to understand certain changes in the flow structure as the governing 
parameters change, it is useful to consider the variations in strength of the 
recirculations formed. A measure of the vortex strength at the instants of zero flow 
is given by the maximum value of the stream function $,,, at times t = n, where 
n is an integer (or equivalently the minimum value of the stream function at times 
t = n+0.5). Where two vortices are present $max represents the strength of the one 
formed in the half-cycle immediately preceding the zero-flow instant. $max is shown 
as a function of Strouhal number for various Reynolds numbers in figure 6. The 
essential features of the figure are the monotonic increase in $,,, with Reynolds 
number at  fixed Strouhal number over most of the Strouhal-number range, and the 
existence of an increasingly sharp maximum with respect to Strouhal number as the 
Reynolds number increases. The increase of vortex strength with Reynolds number 
is not surprising, but the effect of Strouhal number requires some explanation. It 
seems that at low Strouhal number the vortex strength is approximately governed 
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by quasi-steady considerations and is therefore relatively small, except near the time 
of mean-flow reversal, when viscous effects prevent the development of a strong 
vortex. As the Strouhal number increases at fixed Reynolds number, there is less time 
for diffusive cancellation of vorticity, and the vortex strength increases. A t  still 
higher Strouhal numbers, a different limiting mechanism becomes important, in that 
vorticity is confined to increasingly thin Stokes layers at  the wall, and hence does 
not give rise to a strong vortex. Alternatively, the high-Strouhal-number limit can 
be seen as the result of a decrease in the importance of the nonlinear effects responsible 
for separation. 

In the light of figure 6, the change in flow structure from that of figure 3 to that 
of figure 4 becomes more comprehensible. It can be seen that although figures 3(e)  
and 4 (h)  are qualitatively quite similar, the strength of the vortex in the latter figure 
is about eight times that in the former. In  addition, values of aa and St are greater 
for the flow in figure 4, so that the times required for significant diffusive cancellation 
and convection of vorticity are increased. Hence the vortex tends to persist for a 
greater proportion of the flow cycle after its ejection. At a Strouhal number of 0.02, 
convective inertial effects are still important however, so that the rapid changes in 
the direction of the main flow shown in figure 4 (d),  for example, can only be sustained 
whilst the vortex remains very strong. When this strength is reduced somewhat, the 
high pressure a t  the stagnation point causes the main flow to burst through. 

5.2. Persistence of an ejected vortex 
If the Strouhal number is increased further, to values of about 0.05, figure 6 shows 
that vortex strengths tend to be lower than those considered in $5.1. However, the 
reduced rate of vorticity transport, compared with that at lower Strouhal numbers, 
means that an ejected vortex can persist throughout the half-cycle following its 
ejection. The reduced magnitude of convective inertial effects leads to the main flow 
passing around this vortex, which remains at  the centreline, rather than bursting 
through it. 

Streamline patterns in such a flow are shown in figure 7,  in which the parameters 
take values Re, = 120 and St = 0.05. There are two vortices present at time t = 0.05 
(figure 7 a )  of markedly different sizes and opposite signs. The larger vortex at the 
axis of the tube has been formed in the previous half-cycle, whilst the smaller one 
was formed in the half-cycle before that. This small vortex occupies a toroidal volume, 
but is not attached to the wall, along which the vorticity has the same sign 
everywhere. The small vortex rapidly disappears (figure 7 6 )  but the streamlines 
remain ‘kinked ’ throughout the remainder of the half-cycle as the fluid which 
comprised the vortex tends to retain its vorticity as it moves downstream. 

A new flow separation occurs in the diverging part of the tube just before the 
instant of peak flow (figure 7 e ) ,  and this region grows as the flow decelerates, exactly 
as for the flow in figure 3. The shape of the growing vortex reflects the fact that the 
entrained fluid possesses significant vorticity . Late in the deceleration phase, 
separation is also initiated in the converging part of the tube (figure 7 j ) .  

The most important new feature of the flow is the persistence of a vortex at the 
centreline throughout a half-cycle. The size of the vortex decreases at first (figures 
7 a - d ) ,  but then increases late in the deceleration phase (figures 7j, k), and when the 
flow comes to instantaneous rest, a pair of counter-rotating vortices occupies the 
hollow (figure 7 j ) .  The direction of flow is right to left on that part of the centreline 
occupied by the older (clockwise) vortex, and so as the mean flow accelerates in this 
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FIGURE 7 .  Computed instantaneous streamline plots for a flow with parameters Re, = 120; 
8t = 0.05: (a)-($ t = 0.05-0.50 in increments of 0.05. 

sense, fluid passes through the middle of the vortex. The flow near the wall is also 
in the sense right to left, so a free toroidal vortex results as in figure 7 (a). 

Flow-visualization experiments have confirmed the occurrence of flows of the kind 
just described, and photographs for a flow with the same parameter values as in 
figure 7 are given in figure 8. The agreement is generally good, although certain of the 
photographs show slight departure from axisymmetry. Additional understanding of 
the flow can be gained from consideration of instantaneous vorticity contour plots, 
and those corresponding to the streamline plots of figure 7 are given in figure Q. In  
each case, zero-vorticity contours are shown as dashed lines (but note that the 
vorticity is also zero on the axis), and the signs of the vorticity in adjacent regions 
are indicated on the figures. Magnitudes of contour increments are denoted by A[+ 
and A<- in the positive- and negative-vorticity regions respectively. A striking feature 
of figure 9 is the persistence of a zone of negative vorticity in the right-hand half of each 
hollow, corresponding to the continued existence of a clockwise vortex. The magnitude 
of the vorticity minimum continues to decrease throughout the half-cycle however, 
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FIQURE 8. Flow-visualization photographs for a flow with parameters Re, = 120, St = 0.05: (a)-(j) 
t = 0.05-0.50 in increments of 0.05. 
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(a) 

FIGURE 9. Computed vorticity contour plots for a flow with parameters Re, = 120, St = 0.05: (a)-($ 
t = 0.05-0.50 in increments of 0.05: (a) A[+ = 1.09, A[- = -0.49; ( b )  1.48, -0.45; (c) 1.82, -0.38; 
(d )  2.01, -0.36; (e) 2.02, -0.35; (f) 1.80, -0.49; (9)  1.34, -0.59; (h) 0.73, -0.61; (i) 0.54, -0.56; 
(j) 0.50, -0.66. 

even when the separation region is expanding. The reduction occurs both by diffusive 
cancellation of vorticity at the centreline and by convection, but the latter mechanism 
is likely to be of secondary importance after the vortex reaches its minimum size and 
fluid from it ceases to be entrained by the main flow. Another important aspect of 
the vorticity plots is that the left and right halves of the hollow tend to be dominated 
by positive and negative vorticity respectively, because fluid particles near the 
cross-sections of maximum area are convected rather short distances. 

Certain particle paths in a flow of this kind have been computed by numerical 
Lagrangian integration of the velocity field, and the results are shown in figure 10. 
The paths shown, which are typical of a larger set of results, are described over five 
complete flow cycles, beginning a t  an instant of zero flow. The figures suggest that 
there is relatively little fluid exchange through the cross-sections of maximum area, 
although there is good mixing within a wall wavelength centred a t  a constriction. 
If we consider the local Strouhal number at  an enlargement, based on the mean 
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cn 
FIQURE 10. Some particle movements over five cycles in a flow with Re,, = 100,  St = 0.05: t = 0 

(A); 0.5 (0); 1.0 (V); 1.5 (0); 2.0 ( x ) ;  2.5 (+); 3.0 (A); 3.5 (m); 4.0 (V); 4.5 (+); 5.0 (0). 

velocity there at an instant of peak flow, and on the local radius, this is 27 times 
greater than the Strouhal number defined in (6), based on conditions at a constriction, 
and is thus of order unity in figures 7-10. Hence we expect particles near an 
enlargement to be convected a dimensionless distance of this order during a cycle, 
with the result that positive vorticity, generated most strongly at a constriction 
during a positive ‘stroke’, is convected into the adjacent half-wavelength of the tube 
but not much further. The fact that any tube half-wavelength thus tends to contain 
vorticity of a particular sign at all times leads to steady streaming of the kind 
described by Lyne (1971) and by Hall (1974), with particles in the right-hand half 
of each hollow tending to describe clockwise paths, and those in the left-hand half 
describing counterclockwise paths. 

At Strouhal numbers intermediate between those giving rise to the flows of figures 
4 and 7, another flow structure has been predicted computationally, and this is shown 
in figure 11. The flow parameters take the values Re,, = 200 and St = 0.035. The flow 
is similar to that of figure 7, but whereas the counterclockwise vortex of figure 7 ( a )  
is rapidly eroded, that in figure 11 (a) reattaches to the wall (figure 11 13) and persists 
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FIQURE 11. Computed instantaneous streamline plots for a flow with parameters Re, = 200, 
St = 0.035: (a) t = 0.05; ( b )  0.15; (c) 0.25; (d )  0.35; (e) 0.45; (f) 0.50. 

throughout the subsequent half-cycle. Note that the vortex strength at the time of 
zero flow is greater in the flow of figure 11 than in that of figure 7. However, the flow 
just described has not been observed experimentally, and is superseded by time- 
asymmetric flows of the kind described in $6. Possible reasons for this discrepancy 
are discussed in 56.3. 

5.3. Formation of a region of reversed Pow at the centreline 
At Strouhal numbers somewhat greater than those considered in 85.2, flow structures 
of the kind shown in figure 12 result, in which the parameter values are Re,, = 50 and 
St = 0.08. (The change in Reynolds number is less significant, as is shown in $7.) 
Figures 12 (u-f) show superficial similarity with the flow of figure 3, in that complete 
erosion of the ejected vortex at  the centreline takes place, and a new separation occurs 
in the diverging part of the tube. Expansion of the new vortex takes place as the 
flow decelerates. A novel effect is shown in figure 12 (9)  however, as a region of reversed 
flow is formed at the axis, so that at the instant of zero flow a pair of counter-rotating 
vortices occupies the hollow (figure 12 h). As the mean flow accelerates right to left, 
the clockwise vortex is rapidly eroded in the manner of figures 7 (a, b). 

The change in flow structure occurring as the Strouhal number increases above 
values of about 0.05 can be related to the variation in vortex strength shown in figure 
6. In  figures 12(d-f), although the flow is in the sense left to right at every point of 
the axis, there remains a negative vorticity peak at the site of the eroded vortex. As 
long as the flow rate remains close to its maximum value, this vorticity peak is not 
sufficiently strong to cause flow reversal. In  the late stages of bulk-flow deceleration 
however, the slowest-moving fluid, which is that nearest the axis, reverses its 
direction of motion. This effect is analogous to that occurring in uniform tubes, at 
intermediate values of the frequency parameter, when the velocity profiles typically 
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FIQURE 12. Computed instantaneous streamline plots for a flow with parameters Re, = 50, 
St = 0.08: (a) t = 0.05; (a) 0.15; (c) 0.25; (d)  0.30; (e) 0.35; ( f )  0.40; (g) 0.45; (h) 0.50. 

exhibit a maximum near the tube wall: in the wavy-walled-tube case this leads to 
the formation of closed streamlines. Thus, as the Strouhal number increases from 
values of about 0.05 to about 0.08, the time required for erosion of the vortex 
decreases, owing to the weakening of the recirculation: but the vortex reappears 
because of the slower rate of vorticity transport from the site of the erosion. 

Unfortunately, flows of this kind were beyond the Strouhal-number range obtainable 
with the experimental apparatus. 

6. Flows showing time asymmetry 
In all of the flow structures discussed so far, a description of the velocity field as 

it varied over half of a flow cycle was sufficient to specify the flow completely, because 
the velocity field at any time t was precisely minus that existing at tk0.5 (within 
the limits of numerical error). This is expected given the spatial and temporal 
symmetry of the imposed boundary conditions. Under certain conditions however, 
the solution develops time asymmetry as described below. 
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FIQURE 13. Flow-visualization photographs for a flow with parameters Re, = 160, St = 0.035: (a) - ( j )  
t = O . l ( r l  .OO in increments of 0.10. 
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6.1. Asymmetric effects in $ow-visualization experiments 
Visualization photographs for a flow with Re,, = 160 and St = 0.035 are shown in 
figure 13, in which the bulk flow is in the direction left to right in figures 13(a-d) ,  
is in the direction right to left in figures 13 ( f i ) ,  and is instantaneously zero in figures 
13(e , j ) .  The time-asymmetry can be seen immediately from figures 13(e , j ) ,  since the 
former shows a single large vortex occupying the whole hollow, whilst the latter shows 
a pair of comparably sized vortices. 

In  figure 13 ( a )  the flow is beginning to accelerate in the positive sense. A clockwise 
vortex occupies theright-hand part ofeach hollow near theaxis, andacounterclockwise 
vortex is also present, nearer the wall. (Here and throughout this description the sense 
of rotation refers to that part of the axially symmetric recirculation visible in the 
upper half of each photo.) Both recirculations shrink in size initially, the counter- 
clockwise vortex towards the hollow tip and the clockwise one towards the axis, where 
some departure from axisymmetry occurs (figure 13 b) .  A new counterclockwise 
separation occurs at the wall, grows in size as the flow decelerates (figures 13c, d ) ,  
and appears to have coalesced with the older vortex of the same sign at the time of 
zero flow. The centreline vortex has been completely eroded in this time. 

As the flow accelerates right to left, the vortex which is now at the centreline is 
eroded much more slowly than that in figures 13(a, b )  (figures 13f, g) and indeed 
persists until the next instant of zero flow. During this time, a new clockwise 
separation is initiated (figure 13h) which grows throughout the deceleration phase 
(figures 13i, j), but never occupies more than about one third of the hollow 
cross-sectional area. Note that a counterclockwise recirculation persists throughout 
the flow cycle, but that there are intervals when no recirculation of the opposite sense 
is present. 

Observation of an unexpected time asymmetry of the kind just described raised 
the question as to whether this was simply an experimental artifact, and the 
experimental procedure was therefore examined in detail. The ‘ sense ’ of the 
asymmetry was found not to depend on the way in which the flow was started from 
rest: that is if, at  the end of a piston stroke in one direction, a ‘push’ stroke say, 
a single vortex was present in a hollow (as in figure 1 3 e ) ,  and at  the end of a ‘pull’ 
stroke there was a pair of vortices, then this would be true for any start-up procedure. 
The test section had been designed so that the flow in the three central hollows was 
visible, and it was found that the sense of asymmetry in one of these hollows (at one 
end of the group of three) was different from that in the other two. This suggested 
that the sense of asymmetry was linked to small variations in wall shape. Belief in 
this hypothesis was strengthened when the orientation of the test section relative to 
the piston was reversed and the sense of asymmetry in each hollow remained fixed 
relative to the test section. 

The occurrence of time asymmetry was thus linked to imperfections in the 
construction of the test Action. However, for three reasons the asymmetric flow 
structure was not regarded simply as an artifact. First, the accuracy of the test-section 
shape was comparable with that which might be found in an engineering device (for 
example, the maximum variation in the bore at the contractions was about +O.l mm 
with mean 4 mm). Secondly, for flows outside the Strouhal-number range of about 
0.025-0.045, the experimental flow patterns showed no time asymmetry, suggesting 
that amplification of wall-shape inaccuracies occurs selectively. Finally, time- 
asymmetric flow structures have been predicted computationally, albeit with a higher 
Reynolds-number threshold. 
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FIQURE 14. The relative asymmetry of the flow cycle aa a function of the number of computed cycles. 
(a) 8t = 0.035: (i) Re, = 160; (ii) Re, = 200; (iii) Re, = 220; (iv) Re, = 300. ( b )  Re, = 300: (i) 
St = 0.025; (ii) St = 0.030; (iii) St = 0.035; (iv) St = 0.040; (v) St = 0.045. 

6.2. Aeyrnmetric effects in computations 
In an attempt to quantify time-asymmetric effects in wavy-walled-tube flow, the 

relative amounts of vorticity present at the times of zero flow have been calculated. 
(ti, is defined as the sum of the magnitudes of the vorticity values at all 
computational nodes a t  time t = n, divided by the number of nodes; 131 is the 
same quantity evaluated at time t = n + 0.5. n is a positive integer representing the 
number of complete flow cycles computed, in a calculation in which the velocity is 
everywhere zero initially. Hence x, given by 

is a measure of the departure from symmetry of the velocity fields at the times of 
zero flow, and can be taken to represent the asymmetry of the overall flow structure. 
A non-zero value of x is a sufficient condition for an asymmetric flow cycle, and 
experience shows that i t  is also a necessary condition in the present problem. 

Figure 14(a) shows the variation of x with n for a fixed Strouhal number, 
St = 0.035, and a variety of Reynolds numbers. It can be seen that for a relatively 



Osccillatory flows in wavy-walled tubes 535 

FIGURE 15. Computed instantaneous streamline plots for a flow with parameters Re, = 300, 
St = 0.035: (a)-(j)  t = 0.10-1.00 in increments of 0.10. 

low Reynolds number, Re, = 160, which nevertheless gives rise to asymmetrical flow 
in the visualization experiments, the degree of asymmetry decays fairly rapidly to 
negligible values. For lower-Reynolds-number flows the decay is even more rapid. 
As the Reynolds number increases however, the asymmetry persists for an increasing 
number of flow cycles, until for a Reynolds number of 300, x reaches a uniform value 
within about 10 cycles and ceases to change further. A flow in which x maintained 
the same value, correct to 5 significant figures, for 4 consecutive cycles was deemed 
to be permanently asymrn%tric. 

The asymmetry of the flow at a Reynolds number of 220 decays in a distinctly 
non-uniform way, with a relatively gradual change in x for n between 2 and 10, 
followed by a more abrupt decay. It appears that the asymmetry is nearly 
self-sustaining until it reaches a certain critical state, at which point it fails rapidly. 
The final flow structure is similar to that shown in figure 11, but up to n = 10, 
streamline patterns are like those in figure 13. 

The variation of x with n for a number of values of Strouhal number is shown in 
figure 14(b) ,  in which the Reynolds number is 300. For Strouhal numbers of 0.025, 
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0.03 and 0.035, permanent asymmetry, under the definition given in the previous 
paragraph, occurs, whilst for Strouhal numbers of 0.02 or less and 0.05 or greater the 
asymmetry decays to a negligible level within a few cycles. Interesting behaviour 
is shown for St = 0.04 and 0.045. In the former case the flow appears to be time 
asymmetric, but with the degree of asymmetry varying with a period of three flow 
cycles; in the latter, x varies in an apparently random fashion even after 36 complete 
flow cycles. 

A set of computed streamline plots typical of the simpler asymmetric structures 
(that is, excluding the cases showing three-cycle periodicity or ‘random ’ behaviour) 
is shown in figure 15, with the parameters taking values Re, = 300 and St = 0.035. 
These plots represent the ‘settled ’ solution, so that the given non-dimensional times 
are relative to some time t = no, where no is an integer not less than about 12. Despite 
the difference in Reynolds numbers, the flow structure is similar to that shown in the 
photographs of figure 13. Discrepancies arise in the precise shape of streamlines, and 
certain particular differences include the secondary co-rotating vortex in figure 15 (e) 
which is not reflected in figure 13(e). Attempts a t  flow-visualization photography for 
the parameter set of figure 15 were unsuccessful because of the high a2 limit described 
in 53, but visual observation suggested that the flow was similar to that of figure 15. 

It has been noted that in every case in which asymmetry is predicted [excluding 
the cases of figure 14b (iv) and (v)], the sense of the asymmetry has been such that 
a single sense of recirculation is present after a positive ‘stroke’ and a pair of 
counter-rotating vortices after a negative stroke. 

6.3. Discussion of asymmetric flows 
Important questions arise from the discovery of time-asymmetric flows. These 
concern the causes of such asymmetries and the reason for their different Reynolds- 
number thresholds in the computations and experiments. The first question consists 
of two parts, in that the mechanisms both for triggering and maintaining the 
asymmetry must be considered. 

Vorticity plots for the flow of figure 15 are shown in figure 16. The flow asymmetry 
is reflected in these plots primarily by the fact that the vorticity near the centreline 
is positive a t  all times, whilst negative vorticity tends to be concentrated nearer the 
wall. Such a distribution could be stably maintained as follows. The existence of a 
strong concentration of positive vorticity at  the centreline leads to the persistence 
of a counterclockwise recirculation there. The right-to-left flow which generates 
negative vorticity is thus forced around this obstructing vortex, carrying negative 
vorticity only into the wall region. This in turn means that there is no strong 
clockwise vortex a t  the centreline and hence the left-to-right flow passes near the axis 
of the tube, and carries more positive vorticity there. Figures 16(c-g) show a positive 
vorticity peak being generated a t  a constriction and transported from there to a 
position near the middle of a hollow, whereas no equivalent transport process is 
apparent in figures 16(j ,  k, a ,  b ) .  

The mechanism just described depends critically on the values of the flow 
parameters, since asymmetries are only found in a limited region of the parameter 
space. In  particular, it is necessary to generate a counterclockwise vortex of sufficient 
strength to persist at the centreline for some time following its ejection. The 
Strouhal-number range in which asymmetric effects occur corresponds approximately 
with that giving rise to the strongest vortices. 

The ways in which asymmetric flows are triggered, as opposed to maintained, 
appear to  be different in the experiments and computations, since the determinant 
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ti) 
FIQURE 16. Computed vorticity contour plots for a flow with parameters Re, = 300, St = 0.035: 
(a ) - ( j )  t = 0.10-1.00 in increments of 0.10: (a )  AC+ = 3.29, A<- = -2.63; ( b )  2.64, -1.50; (c) 2.61, 
-1.33; ( d )  1.17, -1.31; ( e )  1.02, -0.85; (f)0.87, -1.93; (g)O.66, -2.88; ( h )  1.48, -2.61; ( i )  2.04, 
-1.23; (j) 2.65, -1.65. 

of the sense of asymmetry is different in each case. In  the computations it is the sense 
of flow as the calculation is initiated which determines the sense of asymmetry, and 
this suggests that  a stabilizing process of the kind described above can occur after 
the initial stroke has filled the tube with vorticity of a particular sign. I n  the 
experiments on the other hand, the sense of asymmetry is fixed relative to  the test 
section, irrespective of the start-up conditions. Hence it appears that  slight 
irregularities in the shape of the test section cause slightly more vorticity of a 
particular sign to be generated, and that this gives rise to asymmetry when coupled 
with a reinforcing mechanism. 

These suggestions regarding the causes of time asymmetries are consistent with the 
discrepancy in Reynolds-number thresholds between the experiments and computa- 
tions. If we consider a set of flow parameters giving rise to symmetric flow in the 
computations and asymmetric flow experimentally, for example that represented in 
figure 14 (a)  (iii), it  can be seen that the computed flow is almost stably asymmetric 
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FIGURE 17. Predicted occurrence of flow structures in the (Reynolds number)-(Strouhal number) 
plane. The Roman numerals identify the different flow structures described in the text. 

for a number of cycles before the asymmetry begins to decay rapidly. The slight 
additional imposed asymmetry of the experiments is sufficient to render such flows 
stably asymmetric. 

7. Occurrence of flow structures in the Reynolds number-Strouhal number 
plane 

In  § § 4 4  several flow structures have been described, but the ranges of parameter 
values for which these flows occur has not been indicated in any systematic way : this 
is done in the present section. The regions of the (Reynolds number)-(Strouhal 
number) plane in which the various flows have been predicted to occur numerically 
are shown in figure 17. The flow structures identified in the figure are as follows: 

Type I : inertial vortex ejected during bulk-flow reversal (as described in Sobey 1980 
and shown in figure 3) ; 

Type I1 : viscous-dominated flows (as described in Sobey 1980) ; 
Type 111: quasi-steady flow (as described in Sobey 1983); 
Type IV:  the flow structure shown in figure 4; 
Type V: the flow structure shown in figure 7;  
Type VI : the flow structure shown in figure 11 ; 
Type VII: the flow structure shown in figure 12; 
Type VII I :  any time-asymmetric flow, as shown in figure 15, for example. 
Note that the curves bounding the type-I1 and type-111 flows represent a similar 

division of the parameter space to that shown in Sobey (1983). 
The new flow structures described in $5  are found in the Strouhal-number range 

0.02-0.1, and these flows exhibit intricate streamline patterns which change in 
complex ways. At higher and lower Strouhal numbers the flow structures tend to be 
simpler. The reason for the existence of this Strouhal-number band of relatively 
complex flows is pot clear, but it is perhaps significant that in this range the lengths 
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of typical particle paths, on the timescale of one flow cycle, are comparable with the 
wall wavelength. 

The flow-visualization experiments have confirmed the existence of flow structure 
of types I, IV, V and VIII. These flows have usually been found in regions of the 
parameter space consistent with the computations, although a systematic comparison 
has not been carried out. The exception to this consistency lies in the more frequent 
occurrence of time asymmetries in the experiments, as already discussed: the 
experimental extent of time-asymmetric flows corresponds approximately to regions 
VI and VIII of figure 17 and that part of region V for which the Reynolds number 
is greater than 150. 

8. Conclusions 
A very important distinction between the new flow structures described in $$5 and 

6 and those given in Sobey (1980, 1983) is the increased dependence of the flow 
development in any half-cycle on events in the preceding half-cycle. Sobey (1980) 
states that, in the inertially dominated flows he considers, the velocity field existing 
at any instant of zero flow has little effect on the flow in the subsequent half-cycle. 
This is clearly not the case for many of the flows described here, in which a 
recirculation may persist long after mean flow reversal. The increasing importance 
of time-history effects has been explained in terms of both an increase in the strength 
of recirculations as the Strouhal number and Reynolds number change, and a 
decrease in those physical processes tending to cause smoothing of the vorticity field, 
that is convection and diffusion of vorticity. 

When time-history effects are important, the possibility of time asymmetry exists. 
Since the asymmetries described in $6 can occur in either of two senses, dependent 
on the initial direction of flow (in the computations) or small perturbations of the 
wall shape (in the experiments), their occurrence can be regarded as a bifurcation 
of the flow structure in the parameter space. The emergence of a flow in which the 
periodicity of the velocity field is equal to three complete cycles of the variation in 
flow rate [see figure 14b (iv)] suggests that further bifurcations can occur. In  addition, 
the apparently random behaviour of x, the measure of time asymmetry, shown in 
figure 14b(v) is strongly suggestive of transition to turbulence. These facts argue 
for a detailed study of the bifurcation diagram in this region of the parameter space, 
with the possibility that the results may improve our understanding of transitional 
flows. 

I am greatly indebted to Dr I. J. Sobey of Schlumberger Research, Cambridge, for 
invaluable assistance and encouragement throughout this work. I would also like to 
thank all members of the Medical Engineering Unit of Oxford University where this 
work was performed, including Drs B. J. Bellhouse, J. W. Stairmand and J. P. 
G. Urban for useful advice, and M. A. L. Stevenson, G. Walker, J. Greenford and 
R. W. H. Lewis for technical assistance. Thanks are also due to the referees for many 
valuable criticisms and suggestions. I acknowledge receipt of a Science and Engineering 
Research Council postgraduate studentship. 

18 FLM 168 



540 M .  E .  Ralph 

R E F E R E N C E S  

BATCHELOR, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press. 
BELLHOUSE, B. J., BELLHOUSE, F. H., CURL, C. M., MACMILLAN, T. I., GUNNING, A. J., SPRATT, 

E. H., MACMURRAY, S. B. & NELEMS, J. M. 1973 A high efficiency membrane oxygenator and 
pulsatile pump and its application to animal trials. Trans. Am. SOC. Art$. Int. Organa 19,72-79. 

BELLHOUSE, B. J: & SNUQQS, T. A. 1977 Augmented mass transfer in a membrane lung and a 
hemodialyser using vortex mixing. ZNSERM-Euromech 92, 71, 371-384. 

CHENO, L. C., CLARK, M. E. & ROBERTSON, J. M. 1972 Numerical calculations of oscillatory flow 
in the vicinity of square wall obstacles in plane conduits. J. Biomech. 5 ,  467484. 

CHENQ, L. C., ROBERTSON, J. M. & CLARK, M. E. 1973 Numerical calculations of oscillatory 
non-uniform flow. 11. Parametric study of pressure gradient and frequency with square wall 
obstacles. J. Biomech. 6,  521-538. 

DALY, B. J. 1975 A numerical study of pulsatile flow through constricted arteries. Proc. 4th Intl 
Conf.071 Num. Met?wds in Fluid Dyn. Lecture Notes in Physics, vol. 35, pp. 117-124. Springer. 

DALY, B. J. 1976 A numerical study of pulsatile flow through stenosed canine femoral arteries. 
J .  Biomech. 9, 465-475. 

GILLANI, N. V. & SWANSON, W. M. 1976 Time-dependent laminar flow through a spherical cavity. 
J. Fluid Mech. 78, 99-127. 

HALL, P. 1974 Unsteady viscous flow in a pipe of slowly varying cross-section. J. Fluid Mech. 
64, 209-226. 

LYNE, W. H. 1971 Unsteady viscous flow over a wavy wall. J. Fluid Mech. 50, 33-48. 
O'BRIEN, V. 1975 Unsteady separation phenomena in a two-dimensional cavity. AZAA J. 13, 

415416. 
RALPH, M. E. 1985 Flows in wavy-walled tubes. D.Phil. thesis, University of Oxford. 
ROACHE, P. J. 1976 Computational Fluid Dynamics, 2nd edn. Hermosa. 
SAWIDES, G. N. & GERRARD, J. H. 1984 Numerical analysis of the flow through a corrugated tube 

SOBEY, I. J. 1980 On flow through furrowed channels. Part 1. Calculated flow patterns. J. Fluid 

SOBEY, I. J. 1982 Oscillatory flow a t  intermediate Reynolds number in asymmetric channels. 

SOBEY, I. J. 1983 The occurrence of separation in oscillatory flow. J. Fluid Mech. 134, 247-257. 
STEPHANOFF, K. D., SOBEY, I. J. & BELLHOUSE, B. J. 1980 On flow through furrowed channels. 

with the application to arterial prosthesis. J. Fluid Mech. 138, 129-160. 

Mech. %, 1-26. 

J .  Fluid Mech. 125, 359-373. 

Part 2. Observed flow patterns. J. Fluid Mech. 96, 27-32. 


